Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep Phys Sci ; 3(6): 100934, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1882625

ABSTRACT

During the coronavirus 2019 (COVID-19) pandemic, there has been a dramatic increase in the use of medical products and personal protective equipment, such as masks, gowns, and disposable syringes, to treat patients or administer vaccines. However, this may lead to generation of large quantities of biohazardous medical waste. Here, an alternating-magnetic-field-initiated catalytic strategy is proposed to convert disposable syringes into hydrogen-rich gases and high-value graphite. Specifically, in addition to selecting heavy fraction of bio-oil as initiator, disposable syringe needles are used as radio frequency electromagnetic wave receptors to initiate the deconstruction of disposable syringe plastic. The highest H2 yield of 39.9 mmol g-1 is achieved, and 30.1 mmol g-1 is maintained after 10 cycles. Moreover, a high carbon yield of 286 mg g-1 can be obtained. Beyond disposable syringes, this strategy could help to solve the emerging issue for other types of medical waste (e.g., mask and protective clothing) disposal.

2.
J Hazard Mater ; 420: 126570, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1293967

ABSTRACT

At present, it is very common to wear mask outdoors in order to avoid coronavirus disease 19 (COVID-19) infection. However, this leads to the formation of numerous plastic wastes that threaten humans and ecosystem. Against this major background, a novel co-pyrolysis coupled chemical vapor deposition (CVD) strategy is proposed to systematically convert mask and heavy fraction of bio-oil (HB) into biochar, bio-oil, and three-dimensional graphene films (3DGFs) is proposed. The biochar exhibits high higher heating value (HHV) (33.22-33.75 MJ/kg) and low ash content (2.34%), which is obviously superior to that of the walnut shell and anthracite coal. The bio-oil contains rich aromatic components, such as 1,2-dimethylbenzene and 2-methylnaphthalene, which can be used as chemical feedstock for insecticides. Furthermore, the 3DGF800 has a wide range of applications in the fields of oil spill cleanup and oil/water separation according to its fire resistance, high absorbability (40-89 g g-1) and long-term cycling stability. This research sheds new light on converting plastic wastes and industrial by-products into high added-value chemicals.


Subject(s)
COVID-19 , Graphite , Biofuels/analysis , Charcoal , Ecosystem , Hazardous Waste , Hot Temperature , Humans , Plant Oils , Polyphenols , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL